If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+113t+65=0
a = -16; b = 113; c = +65;
Δ = b2-4ac
Δ = 1132-4·(-16)·65
Δ = 16929
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16929}=\sqrt{81*209}=\sqrt{81}*\sqrt{209}=9\sqrt{209}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(113)-9\sqrt{209}}{2*-16}=\frac{-113-9\sqrt{209}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(113)+9\sqrt{209}}{2*-16}=\frac{-113+9\sqrt{209}}{-32} $
| 6n-3=8n-5 | | 2/3+3/2m-(3/4)=0 | | y2-15y=-54 | | 2/3+3/2m=3/4 | | 3x^2/3-4=71 | | 4.74=8x | | 3x^-4=71 | | 8x=$4.74 | | -x-8=x+520 | | 16x-5=3(4x+7 | | 8x=4.74 | | (x2+4x+8)√(x+2)=0 | | 43 =m+41 | | 9-(7-8x)=4x+3 | | 4x+7=6x+13=180 | | Y=(2/5)x+7 | | -30=q-10=11q | | 90(x=8)= | | -1+14=17+12x | | 3(6-3x)=6 | | 5x-22=4×-22 | | 5x-22=4×-22×= | | 4(2v−7)=3v−5 | | -3/8(x-7)=5=3x | | 5p+5=3p=21 | | -5+3x=9+3x | | 4(2x−7)=3x−5 | | 5(3x)=8 | | −2(5−3x)+5=9+3x | | 3x+2(-2)=-1 | | (x)(5x)(x)=90 | | 4x^2-64x+87=0 |